We demonstrate the use of a probabilistic machine learning technique to develop stochastic parameterizations of atmospheric column-physics. After suitable preprocessing of NASA's Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA2) data to minimize the effects of high-frequency, high-wavenumber component of MERRA2 estimate of vertical velocity, we use generative adversarial networks to learn the probability distribution of vertical profiles of diabatic sources conditioned on vertical profiles of temperature and humidity. This may be viewed as an improvement over previous similar but deterministic approaches that seek to alleviate both, shortcomings of human-designed physics parameterizations, and the computational demand of the "physics" step in climate models.
translated by 谷歌翻译
人类对象与铰接物体的相互作用在日常生活中很普遍。尽管单视图3D重建方面取得了很多进展,但从RGB视频中推断出一个铰接的3D对象模型仍然具有挑战性,显示一个人操纵对象的人。我们从RGB视频中划定了铰接的3D人体对象相互作用重建的任务,并对这项任务进行了五个方法家族的系统基准:3D平面估计,3D Cuboid估计,CAD模型拟合,隐式现场拟合以及自由 - 自由 - 形式网状配件。我们的实验表明,即使提供了有关观察到的对象的地面真相信息,所有方法也难以获得高精度结果。我们确定使任务具有挑战性的关键因素,并为这项具有挑战性的3D计算机视觉任务提出指示。短视频摘要https://www.youtube.com/watch?v=5talkbojzwc
translated by 谷歌翻译
显微镜交通模拟为自动驾驶汽车(AVS)提供了可控,可重复且有效的测试环境。为了公正地评估AVS的安全性能,在模拟自然主义驾驶环境(NDE)中,环境统计数据的概率分布必须与现实世界中驾驶环境的统计数据一致。但是,尽管人类驾驶行为已经在运输工程领域进行了广泛的研究,但大多数现有模型都是用于交通流量分析的,而无需考虑驾驶行为的分布一致性,这可能会导致AV测试的重大评估偏见。为了填补这一研究差距,本文提出了分布一致的NDE建模框架。使用大规模的自然驾驶数据,获得了经验分布,以在不同条件下构建随机的人类驾驶行为模型。为了解决仿真过程中的误差积累问题,进一步设计了一种基于优化的方法来完善经验行为模型。具体而言,车辆状态的演变被建模为马尔可夫链,其固定分布被扭曲以匹配现实世界驾驶环境的分布。在多车道高速公路驾驶模拟的案例研究中评估了该框架,其中验证了生成的NDE的分布精度,并有效地评估了AV模型的安全性能。
translated by 谷歌翻译
Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.
translated by 谷歌翻译
We present Second Thought, a new learning paradigm that enables language models (LMs) to re-align with human values. By modeling the chain-of-edits between value-unaligned and value-aligned text, with LM fine-tuning and additional refinement through reinforcement learning, Second Thought not only achieves superior performance in three value alignment benchmark datasets but also shows strong human-value transfer learning ability in few-shot scenarios. The generated editing steps also offer better interpretability and ease for interactive error correction. Extensive human evaluations further confirm its effectiveness.
translated by 谷歌翻译
Tobacco origin identification is significantly important in tobacco industry. Modeling analysis for sensor data with near infrared spectroscopy has become a popular method for rapid detection of internal features. However, for sensor data analysis using traditional artificial neural network or deep network models, the training process is extremely time-consuming. In this paper, a novel broad learning system with Takagi-Sugeno (TS) fuzzy subsystem is proposed for rapid identification of tobacco origin. Incremental learning is employed in the proposed method, which obtains the weight matrix of the network after a very small amount of computation, resulting in much shorter training time for the model, with only about 3 seconds for the extra step training. The experimental results show that the TS fuzzy subsystem can extract features from the near infrared data and effectively improve the recognition performance. The proposed method can achieve the highest prediction accuracy (95.59 %) in comparison to the traditional classification algorithms, artificial neural network, and deep convolutional neural network, and has a great advantage in the training time with only about 128 seconds.
translated by 谷歌翻译
Purpose: Tracking the 3D motion of the surgical tool and the patient anatomy is a fundamental requirement for computer-assisted skull-base surgery. The estimated motion can be used both for intra-operative guidance and for downstream skill analysis. Recovering such motion solely from surgical videos is desirable, as it is compliant with current clinical workflows and instrumentation. Methods: We present Tracker of Anatomy and Tool (TAToo). TAToo jointly tracks the rigid 3D motion of patient skull and surgical drill from stereo microscopic videos. TAToo estimates motion via an iterative optimization process in an end-to-end differentiable form. For robust tracking performance, TAToo adopts a probabilistic formulation and enforces geometric constraints on the object level. Results: We validate TAToo on both simulation data, where ground truth motion is available, as well as on anthropomorphic phantom data, where optical tracking provides a strong baseline. We report sub-millimeter and millimeter inter-frame tracking accuracy for skull and drill, respectively, with rotation errors below 1{\deg}. We further illustrate how TAToo may be used in a surgical navigation setting. Conclusion: We present TAToo, which simultaneously tracks the surgical tool and the patient anatomy in skull-base surgery. TAToo directly predicts the motion from surgical videos, without the need of any markers. Our results show that the performance of TAToo compares favorably to competing approaches. Future work will include fine-tuning of our depth network to reach a 1 mm clinical accuracy goal desired for surgical applications in the skull base.
translated by 谷歌翻译
As a common appearance defect of concrete bridges, cracks are important indices for bridge structure health assessment. Although there has been much research on crack identification, research on the evolution mechanism of bridge cracks is still far from practical applications. In this paper, the state-of-the-art research on intelligent theories and methodologies for intelligent feature extraction, data fusion and crack detection based on data-driven approaches is comprehensively reviewed. The research is discussed from three aspects: the feature extraction level of the multimodal parameters of bridge cracks, the description level and the diagnosis level of the bridge crack damage states. We focus on previous research concerning the quantitative characterization problems of multimodal parameters of bridge cracks and their implementation in crack identification, while highlighting some of their major drawbacks. In addition, the current challenges and potential future research directions are discussed.
translated by 谷歌翻译
Magnetic Resonance Fingerprinting (MRF) is an efficient quantitative MRI technique that can extract important tissue and system parameters such as T1, T2, B0, and B1 from a single scan. This property also makes it attractive for retrospectively synthesizing contrast-weighted images. In general, contrast-weighted images like T1-weighted, T2-weighted, etc., can be synthesized directly from parameter maps through spin-dynamics simulation (i.e., Bloch or Extended Phase Graph models). However, these approaches often exhibit artifacts due to imperfections in the mapping, the sequence modeling, and the data acquisition. Here we propose a supervised learning-based method that directly synthesizes contrast-weighted images from the MRF data without going through the quantitative mapping and spin-dynamics simulation. To implement our direct contrast synthesis (DCS) method, we deploy a conditional Generative Adversarial Network (GAN) framework and propose a multi-branch U-Net as the generator. The input MRF data are used to directly synthesize T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) images through supervised training on paired MRF and target spin echo-based contrast-weighted scans. In-vivo experiments demonstrate excellent image quality compared to simulation-based contrast synthesis and previous DCS methods, both visually as well as by quantitative metrics. We also demonstrate cases where our trained model is able to mitigate in-flow and spiral off-resonance artifacts that are typically seen in MRF reconstructions and thus more faithfully represent conventional spin echo-based contrast-weighted images.
translated by 谷歌翻译
We present IMAS, a method that segments the primary objects in videos without manual annotation in training or inference. Previous methods in unsupervised video object segmentation (UVOS) have demonstrated the effectiveness of motion as either input or supervision for segmentation. However, motion signals may be uninformative or even misleading in cases such as deformable objects and objects with reflections, causing unsatisfactory segmentation. In contrast, IMAS achieves Improved UVOS with Motion-Appearance Synergy. Our method has two training stages: 1) a motion-supervised object discovery stage that deals with motion-appearance conflicts through a learnable residual pathway; 2) a refinement stage with both low- and high-level appearance supervision to correct model misconceptions learned from misleading motion cues. Additionally, we propose motion-semantic alignment as a model-agnostic annotation-free hyperparam tuning method. We demonstrate its effectiveness in tuning critical hyperparams previously tuned with human annotation or hand-crafted hyperparam-specific metrics. IMAS greatly improves the segmentation quality on several common UVOS benchmarks. For example, we surpass previous methods by 8.3% on DAVIS16 benchmark with only standard ResNet and convolutional heads. We intend to release our code for future research and applications.
translated by 谷歌翻译